

DATOS	DATOS DEL ASPIRANTE	
Apellidos:		
Nombre:	DNI:	
I.E.S.:		Numérica de 0 a 10, con dos decimales

PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR Convocatoria de 17 y 18 de junio de 2013 (Resolución de 11 de febrero de 2013, BOA 27/02/2013)

PARTE ESPECÍFICA: OPCIÓN 5 (ELECTROTECNIA)

 Calculad las intensidades del circuito de la figura 1, e indicad el sentido correcto de las mismas. (2 puntos)

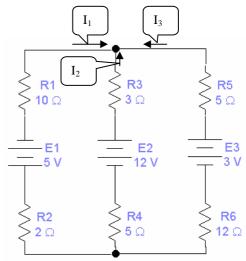
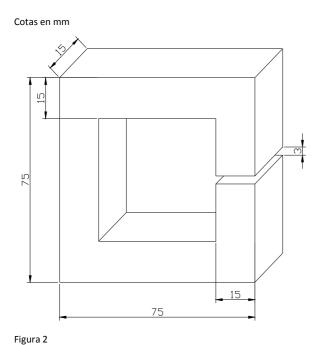
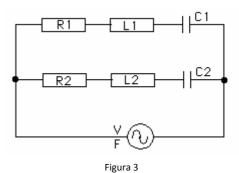



Figura 1

2. En el núcleo de la figura 2, de chapa normal, colocamos una bobina de 200 espiras. Si queremos obtener una inducción de 1,9 T en el entrehierro. Calculad:

- a) La fuerza magnetomotriz. (0,5 puntos)La intensidad de corriente hay que suministrar a la bobina. (0,5 puntos)
- b) La reluctancia del conjunto. (0,5 puntos)
- c) El flujo en el circuito magnético. (0,5 puntos)

Tabla 10.1. Relación entre *H* y *B* para diferentes niveles de inducción de varias sustancias ferromagnéticas.


B (T)	H (Av/m)		
	Hierro forjado	Chapa normal	Chapa al silicio
0,1	80	50	90
0,3	120	65	140
0,5	160	100	170
0,7	230	180	240
0,9	400	360	350
1,1	650	675	530
1,3	1.000	1.200	1.300
1,5	2.400	2.200	5.000
1,6	5.300	3.500	9.000
1,7	7.000	6.000	15.500
1,8	11.000	10.000	27.500
1,9	17.000	16.000	
2	27.000	32.000	

3. Con los datos del circuito de la figura 3.

Calculad:

- a) Las impedancias de cada rama y la total.(0,5 puntos)
- b) Los ángulos de cada rama y el total. (0,5 puntos)
- c) Las potencias de cada una de las ramas y las totales. (0,5 puntos)
- d) El condensador necesario para corregir el f.d.p. a 0,9. (0,5 puntos)

R1=20 Ω , L1=100mH, C1=200 μ F, R2=25 Ω , L2=250mH, C2=150 μ F, V=230V, f=50Hz

- 4. Una línea trifásica de cobre, $\gamma = 44 \text{ m} / \Omega \text{ mm}^2$, alimenta los siguientes elementos:
 - 1 Motor trifásico de 5 CV, 400 V, cos φ = 0,7
 - 1 Motor monofásico de 1 CV, 230 V, cos φ = 0,8
 - 1 Motor monofásico de 2 CV, 230 V, $\cos \phi = 0.6$
 - 1 Motor trifásico de 3 CV, 400 V, cos φ = 0,85
 Calculad:
 - a) Las potencias totales. (0,5 puntos)
 - b) El factor de potencia total. (0,5 puntos)
 - c) La intensidad total. (0,5 puntos)
 - d) La sección de la línea, para una caída de tensión del 3 % y una longitud de 300 m. (0,5 puntos)
- 5. Tenemos un transformador monofásico de 100 kVA, 10000 / 400 V, en el ensayo de vacío las pérdidas son de 600 W y en el ensayo de cortocircuito obtenemos los siguientes resultados: Vcc = 400 V, Pcc = 2000 W

Calculad:

- a) Tensiones URcc, UXcc. (0,5 puntos)
- b) Zcc, Rcc y Xcc. (0,5 puntos)
- c) Pérdidas en el cobre a media carga. (0,5 puntos)
- d) El rendimiento máximo del transformador con f.d.p. 0,9. (0,5 puntos)

CRITERIOS DE CALIFICACIÓN:

- En cada apartado está anotada su calificación.
- Para obtener la máxima puntuación es necesario poner las fórmulas utilizadas, anotar los valores adoptados y en los resultados poner las unidades del S.I., adoptando los múltiplos y/o submúltiplos más adecuados.